Geometrically constrained statistical systems on regular and random lattices: From folding to meanders
نویسندگان
چکیده
We review a number a recent advances in the study of two-dimensional statistical models with strong geometrical constraints. These include folding problems of regular and random lattices as well as the famous meander problem of enumerating the topologically inequivalent configurations of a meandering road crossing a straight river through a given number of bridges. All these problems turn out to have reformulations in terms of fully packed loop models allowing for a unified Coulomb gas description of their statistical properties. A number of exact results and physically motivated conjectures are presented in detail, including the remarkable meander configuration exponent α = (29 + √ 145)/12.
منابع مشابه
Geometrically Constrained Statistical Models on Fixed and Random Lattices: From Hard Squares to Meanders
We review various combinatorial applications of field theoretical and matrix model approaches to equilibrium statistical physics involving the enumeration of fixed and random lattice model configurations. We show how the structures of the underlying lattices, in particular their colorability properties, become relevant when we consider hard-particles or fully-packed loop models on them. We show...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملTopological Residuated Lattices
In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...
متن کاملSemi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices
At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...
متن کاملFrom Fully-Packed Loops to Meanders: Exact Exponents
We address the meander problem “enumerate all topologically inequivalent configurations of a closed nonselfintersecting plane curve intersecting a given line through a fixed number of points”. We show that meanders may be viewed as the configurations of a suitable fully-packed loop statistical model defined on a random surface. Using standard results relating critical singularities of a lattice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005